ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Zihao Liu, Xiang Zhou, Renjie Zhu, Li Zhao, Lingfeng Wei, Zejie Yin
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 127-136
Technical Paper | doi.org/10.1080/15361055.2018.1526026
Articles are hosted by Taylor and Francis Online.
The neutron flux monitor (NFM) is one of the most important diagnostic systems for ITER. Wide-range measuring algorithm (WRMA) is the core algorithm in the NFM system, which deals with the key task of neutron flux measurement. In this paper, the principle and implementation of WRMA, including counting and Campbelling algorithms, are introduced in detail, with error sources of the two algorithms analyzed. In order to study the performance of WRMA, we established a simulation system for neutron signal processing using MATLAB. According to the principle of neutron pulse distribution, the digital waveforms at different neutron flux levels were simulated as inputs to the WRMA module. The variation of measuring error was studied by comparing the counting and Campbelling results with actual input counting rate. In addition, the effects of different neutron pulse widths on the results of the algorithm were simulated. A preliminary experiment at HL-2A was carried out to validate the algorithm.