ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Yuxin Chai, Xingui Zhou, Huayu Zhang, Yumin Zhang
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 112-119
Technical Paper | doi.org/10.1080/15361055.2018.1533620
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiCf/SiC) composites, employing two SiC fibers, KD-I and KD-II, respectively, were fabricated by the precursor infiltration and pyrolysis process. A pyrocarbon coating was used as the fiber-matrix interface. In addition, the effects of heat treatment on the properties of the SiC fibers and SiCf/SiC composites were investigated. Results revealed marginal performance degradation of the KD-I and KD-II SiC fibers after heat treatment at 1100°C for 1 h. However, heat treatment at 1400°C for 1 h led to the decrease in the single-filament tensile strength of the KD-I and KD-II SiC fibers by 50.2% and 10.1%, respectively. In addition, the flexural strength of the SiCf/SiC composites, which were fabricated using the KD-I and KD-II SiC fibers, decreased by 49.6% and 15.9%, respectively. The difference in the composition of the KD-I and KD-II SiC fibers demonstrated that the SiC fibers and SiCf/SiC composites decreased by varying degrees.