ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
L. A. El-Guebaly, ARIES Team, and FNSF Team
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 340-369
Technical Paper | doi.org/10.1080/15361055.2018.1494946
Articles are hosted by Taylor and Francis Online.
In recent decades, fusion energy for electricity has become an international issue with worldwide interest in several magnetic fusion concepts offering the most promising energy source for this century. From existing experiments to power plants, several next-step facilities (NSFs) must be built to bridge the large gaps in fusion science and nuclear technology. During the course of fusion studies, all power plants and NSFs require an integral nuclear assessment to identify the nuclear parameters and address key issues related to tritium breeding ratio (TBR), blanket design, selection of low-activation materials, radial/vertical build optimization and definition, magnet protection, shielding, activation, and survivability of structural materials in 14-MeV neutron environment. This paper presents our design philosophy, nuclear assessment approach, and recent research results for ARIES conceptual tokamak, spherical tokamak, and stellarator power plants as well as NSFs. Some features of the nuclear activities [such as tritium breeding requirement (overall TBR = 1.05), blanket concept, and radwaste issues] remained fixed between the various designs, while others [such as service lifetime (20 to 200 displacements per atom) and shielding requirements] were subject to change to meet the specific design needs. Emerging challenges and lessons learned from nuclear assessments performed during recent decades are highlighted throughout the paper. In particular, the cost implication of uncertainties in the TBR prediction and the large amount of low-level waste generation are important challenges facing the fusion community and should be addressed by interdisciplinary research programs.