ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Katherine E. Royston, Seth R. Johnson, Thomas M. Evans, Scott W. Mosher, Jonathan Naish, Bor Kos
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 303-314
Technical Paper | doi.org/10.1080/15361055.2018.1504508
Articles are hosted by Taylor and Francis Online.
Fusion energy systems pose unique challenges to the modeling and simulation community. These challenges must be met to ensure the success of the ITER experimental fusion reactor. ITER’s complex systems require detailed modeling that goes beyond the scale of comparable simulations to date. In this work, the Denovo radiation transport code was used to calculate neutron fluence and kerma for the JET streaming benchmark. This work was performed on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. Denovo is a novel three-dimensional discrete ordinates transport code designed to be highly scalable. Sensitivity studies have been completed to examine the impact of several deterministic parameters. Results were compared against experiment as well as the MCNP and Shift Monte Carlo codes.