ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Scott W. Mosher, Stephen C. Wilson
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 263-276
Technical Paper | doi.org/10.1080/15361055.2018.1496691
Articles are hosted by Taylor and Francis Online.
Neutronics analyses of the ITER experimental fusion reactor rely on increasingly complex geometry models and estimates of energy-dependent neutron flux and radiation dose-rate distributions generated at ever higher resolutions. There are significant practical challenges with applying the Monte Carlo N-Particle (MCNP) continuous-energy transport code to high-resolution analyses. For models consisting of more than 100 000 surfaces and cells, geometry initialization can take several hours, thus slowing down model integration and transport analysis efforts. In multithreaded simulations, the amount of memory consumed by superimposed mesh tally data increases in proportion to the number of threads. This behavior limits either the tally resolution or the number of processor cores that can be utilized in the simulation. This paper describes algorithmic improvements that were implemented in a modified version of MCNP5 to overcome these limitations. These improvements are referred to as the Oak Ridge National Laboratory Transformative Neutronics (ORNL-TN) upgrade. A comparison of the performance and memory usage of both MCNP5 and ORNL-TN on several relevant fusion neutronics models is presented. In these tests and in actual high-resolution neutronics analyses, ORNL-TN reduces geometry processing times from hours to a few seconds and increases in-memory mesh tally capacity from the order of 108 to 1010 space-energy bins.