ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Scott W. Mosher, Stephen C. Wilson
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 263-276
Technical Paper | doi.org/10.1080/15361055.2018.1496691
Articles are hosted by Taylor and Francis Online.
Neutronics analyses of the ITER experimental fusion reactor rely on increasingly complex geometry models and estimates of energy-dependent neutron flux and radiation dose-rate distributions generated at ever higher resolutions. There are significant practical challenges with applying the Monte Carlo N-Particle (MCNP) continuous-energy transport code to high-resolution analyses. For models consisting of more than 100 000 surfaces and cells, geometry initialization can take several hours, thus slowing down model integration and transport analysis efforts. In multithreaded simulations, the amount of memory consumed by superimposed mesh tally data increases in proportion to the number of threads. This behavior limits either the tally resolution or the number of processor cores that can be utilized in the simulation. This paper describes algorithmic improvements that were implemented in a modified version of MCNP5 to overcome these limitations. These improvements are referred to as the Oak Ridge National Laboratory Transformative Neutronics (ORNL-TN) upgrade. A comparison of the performance and memory usage of both MCNP5 and ORNL-TN on several relevant fusion neutronics models is presented. In these tests and in actual high-resolution neutronics analyses, ORNL-TN reduces geometry processing times from hours to a few seconds and increases in-memory mesh tally capacity from the order of 108 to 1010 space-energy bins.