ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Masaru Takagi, Robert Cook, Barry McQuillan, Jane Gibson, Sally Paguio
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 171-175
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A445
Articles are hosted by Taylor and Francis Online.
In recent years we have demonstrated that 2-mm-diameter poly(-methylstyrene) mandrels meeting indirect drive NIF surface symmetry specifications can be produced using microencapsulation methods. Recently higher gain target designs have been introduced that rely on frequency doubled (green) laser energy and require capsules up to 4 mm in diameter, nominally meeting the same surface finish and symmetry requirements as the existing 2-mm-diameter capsule designs. Direct drive on the NIF also requires larger capsules. In order to evaluate whether the current microencapsulation-based mandrel fabrication techniques will adequately scale to these larger capsules, we have explored extending the techniques to 4-mm-diameter capsules. We find that microencapsulated shells meeting NIF symmetry specifications can be produced, the processing changes necessary to accomplish this are presented here.