ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
China launches fusion-focused company
China has established a state-owned fusion energy company, China Fusion Energy Co. (CFEC), as a subsidiary of the China National Nuclear Corporation with the goal of accelerating the commercialization of fusion energy. According to a report by People’s Daily Online, the new company has a registered capital of 15 billion yuan (about $2.1 billion).
B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 552-558
Technical Note | doi.org/10.1080/15361055.2017.1404346
Articles are hosted by Taylor and Francis Online.
If both carbon and tungsten were to be part of the plasma-facing armor in a future fusion reactor, it is inevitable that carbon co-deposits containing tungsten impurities will form. This work examines the effectiveness of thermo-oxidation in removing hydrogen from W-containing carbon co-deposits. Amorphous deuterated hydrocarbon (a-C:D) films were created with a CD4/Ar direct-current glow discharge and doped with W sputtered from a W mesh in front of the specimen. The W concentration in the specimens ranged from 0 to 35 at. % W/(W + C). The films were oxidized at 350°C, in 2 Torr pure O2 for time increments totaling 8 h. The D content of the films was measured before and at various stages of the oxidation exposure using laser thermal desorption spectroscopy. Essentially all deuterium was removed from films containing very little or no W doping [<0.1% W/(W + C)]. For films with more W [few percent W/(W + C)], oxidation was less effective at removing D. For two specimens with 2.4% and 35% W/(W + C), oxidation was completely ineffective at removing D.