ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 552-558
Technical Note | doi.org/10.1080/15361055.2017.1404346
Articles are hosted by Taylor and Francis Online.
If both carbon and tungsten were to be part of the plasma-facing armor in a future fusion reactor, it is inevitable that carbon co-deposits containing tungsten impurities will form. This work examines the effectiveness of thermo-oxidation in removing hydrogen from W-containing carbon co-deposits. Amorphous deuterated hydrocarbon (a-C:D) films were created with a CD4/Ar direct-current glow discharge and doped with W sputtered from a W mesh in front of the specimen. The W concentration in the specimens ranged from 0 to 35 at. % W/(W + C). The films were oxidized at 350°C, in 2 Torr pure O2 for time increments totaling 8 h. The D content of the films was measured before and at various stages of the oxidation exposure using laser thermal desorption spectroscopy. Essentially all deuterium was removed from films containing very little or no W doping [<0.1% W/(W + C)]. For films with more W [few percent W/(W + C)], oxidation was less effective at removing D. For two specimens with 2.4% and 35% W/(W + C), oxidation was completely ineffective at removing D.