ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 552-558
Technical Note | doi.org/10.1080/15361055.2017.1404346
Articles are hosted by Taylor and Francis Online.
If both carbon and tungsten were to be part of the plasma-facing armor in a future fusion reactor, it is inevitable that carbon co-deposits containing tungsten impurities will form. This work examines the effectiveness of thermo-oxidation in removing hydrogen from W-containing carbon co-deposits. Amorphous deuterated hydrocarbon (a-C:D) films were created with a CD4/Ar direct-current glow discharge and doped with W sputtered from a W mesh in front of the specimen. The W concentration in the specimens ranged from 0 to 35 at. % W/(W + C). The films were oxidized at 350°C, in 2 Torr pure O2 for time increments totaling 8 h. The D content of the films was measured before and at various stages of the oxidation exposure using laser thermal desorption spectroscopy. Essentially all deuterium was removed from films containing very little or no W doping [<0.1% W/(W + C)]. For films with more W [few percent W/(W + C)], oxidation was less effective at removing D. For two specimens with 2.4% and 35% W/(W + C), oxidation was completely ineffective at removing D.