ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
S. J. Shin, J. R. I. Lee, T. van Buuren, K. C. Chen, K. A. Moreno, H. Huang, D. E. Hoover, A. Nikroo, A. V. Hamza, S. O. Kucheyev
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 467-473
Technical Paper | doi.org/10.1080/15361055.2017.1392181
Articles are hosted by Taylor and Francis Online.
Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for the entire range of ion doses studied (2 × 1014 to 1 × 1016 cm−2) and for annealing temperatures up to 700°C. Finally, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~1017 cm−2.