ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
S. J. Shin, J. R. I. Lee, T. van Buuren, K. C. Chen, K. A. Moreno, H. Huang, D. E. Hoover, A. Nikroo, A. V. Hamza, S. O. Kucheyev
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 467-473
Technical Paper | doi.org/10.1080/15361055.2017.1392181
Articles are hosted by Taylor and Francis Online.
Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for the entire range of ion doses studied (2 × 1014 to 1 × 1016 cm−2) and for annealing temperatures up to 700°C. Finally, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~1017 cm−2.