ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Kyle J. Cluff, Lynne A. Goodwin, Christopher E. Hamilton, Matthew N. Lee, John A. Oertel
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 183-186
Technical Paper | doi.org/10.1080/15361055.2017.1387453
Articles are hosted by Taylor and Francis Online.
Differences in molecular mobility between polystyrene foam and Brij-78 wax results in vast differences in the 1H nuclear magnetic resonance (NMR) linewidth. This allows for the convenient determination of wax content in the polystyrene foam components of inertial confinement fusion targets via solid-state NMR. Contamination levels as low as 0.1% are easily recognized and quantified, and the detection limit is calculated to be 0.02% even when only 32 transients are recorded.