ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
I. N. Sviatoslavsky, E. A. Mogahed, Y-K. M. Peng, B. E. Nelson, P. J. Fogarty, E. T. Cheng, R. J. Cerbone
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1649-1653
Nonelectric Applications of Fusion | doi.org/10.13182/FST96-A11963187
Articles are hosted by Taylor and Francis Online.
Engineering design issues of a volumetric neutron source (VNS) based on a steady state low aspect ratio DT tokamak are presented. At the present the major radius is 0.8 m, the minor radius 0.6 m for an aspect ratio of 1.33, the plasma current is 10.1 MA, the toroidal field at the major radius is 1.8 T, the fusion power is 39 MW giving an average neutron wall loading of 1.0 MW/m2 on the outboard side with an available testing area of 10 m2. Two neutral beams delivering more than 20 MW are used to drive the steady state fusion plasma. A single turn unshielded water cooled dispersion strengthened (DS) Cu centerpost is used in conjunction with a conducting Cu bell jar which acts as a vacuum boundary and the return legs for the toroidal field (TF) coils. The centerpost is 9 m long, carries 7.2 MA and is specially shaped to minimize ohmic heating, which is calculated using temperature dependent DS Cu properties and increases in resistivity due to nuclear transmutations are accounted for. A naturally diverted plasma scrapeoff layer dominated by pressure-driven instabilities is assumed giving a peak heat flux of 5.2 MW/m2 on the diverter plates. Fabrication approaches for the centerpost and its replacement time lines have been estimated to be feasible and reasonable.