ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ralph W. Moir
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1613-1623
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963182
Articles are hosted by Taylor and Francis Online.
If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 400 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid Flibe, (Li2BeF4) so that the chamber and other apparatus can stand up to these bursts of energy at 6 Hz for 1 GWe without replacing components during the plant's 30-year life. With liquid protection the capacity factor will be increased and the cost of component replacement will be decreased. The design is robust to technology risks in the sense that if the performance of targets, drivers and other components fall short of predictions, the cost of electricity rises surprisingly little. For example at 2 GWe, if it takes twice as much energy to ignite a target as previously projected instead of only 1.5 times, the COE increases 9% from 4 ȼ/kWh, and if the driver cost is increased by 30%, the COE increases by 12%.
The design strategy we recommend is to use conventional engineering principles and known materials in an optimized way to obtain the lowest cost of electricity while keeping the design robust to short falls in predicted cost and performance of components. For a number of components with a high technology risk we have fall-back options. However, good target performance (Gain > 50 for driver energy < 7 MJ) and low cost drivers (<800 M$ direct at driver energy ≥ 7 MJ) would be helpful to achieving good economics.