ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Paolo Rocco, Massimo Zucchetti
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1550-1556
Safety and Environment | doi.org/10.13182/FST96-A11963171
Articles are hosted by Taylor and Francis Online.
To minimize the amount of radioactive waste requiring permanent disposal may strongly influence the environmental acceptability of fusion power. The waste management strategy applied here to the activated waste of ITER achieves this goal by maximizing recycling (reuse of the material) and clearance (declassification to non active waste). Limits of the surface dose rates of the waste after an interim storage of 50 years define various recycling procedures. The possibility of clearance is assessed from limits of the specific activity of the waste. These limits depend on the relative hazard of the radionuclides contained in the waste.
It turns out that only a small part of ITER materials have such a radioactivity as to prevent its recycling or clearance (namely, first wall and front blanket). Most of the blanket and all the vessel may be recycled by remote handling. All the other components can be cleared or “hands-on” recycled.