ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kathryn A. McCarthy, Galen R. Smolik, Donald L. Hagrman, David A. Petti
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1540-1544
Safety and Environment | doi.org/10.13182/FST96-A11963169
Articles are hosted by Taylor and Francis Online.
This paper presents dose calculations due to oxidation-driven mobilization of a vanadium alloy, V-4Cr-4Ti, exposed to air. We concentrate on air because it is highly unlikely that the vanadium alloy will be used with a water coolant. We calculate the offsite dose using data from transpiration tests together with information from activation calculations and the radiological hazard of the material from a dose code. We compare the early dose as a function of temperature from V-4Cr-4Ti with the early dose from tungsten, copper, 316SS, and a low activation ferritic steel. The vanadium alloy dose is almost an order of magnitude lower than the dose from the other materials for the entire temperature range examined, 600-1200°C.