ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kazuyuki Takase, Tomoaki Kunugi, Yasushi Seki
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1459-1464
Safety and Environment | doi.org/10.13182/FST96-A11963154
Articles are hosted by Taylor and Francis Online.
As one of thermofluid safety studies in ITER, buoyancy-driven exchange flow behavior through breaches of the vacuum vessel was investigated quantitatively using a preliminary LOVA (Loss Of VAcuum event) apparatus which simulated the Tokamak vacuum vessel of a fusion reactor with a small-scaled model. Helium gas and air were used as the working fluids. Experimental parameters were breach position, breach number, breach length, breach diameter, breach combination and the wall temperature of the VV. The present study showed that the relationship between the exchange rate and time depended on the magnitude of the potential energy from the ground level to the breach position and the wall temperature of the vacuum vessel. The exchange rate decreased as the breach length increased and the breach diameter decreased.