ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Y. Gu, M. Williams, R. Stubbers, G. Miley
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1342-1346
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963135
Articles are hosted by Taylor and Francis Online.
Inertial electrostatic confinement (IEC) fusion confines high energy ions in potential wells, where their increased energy and density yields a high fusion rate. Studies of the IEC at the University of Illinois (UI) initially concentrated on steady-state operation where neutron yields of ~106 D-D n/s are routinely obtained. However, the development of a pulsed configuration has been undertaken to provide higher neutron yields. Preliminary experiments have demonstrated I2 scaling during pulsed operation when the perveance threshold of 2.2 mA/kV3/2 is exceeded. Based on these results, it appears that the present IEC could be operated with 3-A, 100-kV repetitive pulses with a 10% duty factor to produce neutron yields of ~1010 neutrons/second.