ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Satoshi Sato, Hideyuki Takatsu, Yasushi Seki, Toshihisa Utsumi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1129-1133
Neutronics Experiments and Analyses | doi.org/10.13182/FST96-A11963100
Articles are hosted by Taylor and Francis Online.
Shielding analyses of the inboard blanket, the vacuum vessel and the Toroidal Field Coil (TFC) in International Thermonuclear Experimental Reactor OTTER) were performed by Monte Carlo and 2-dimensional discrete ordinate methods taking the radiation streaming through the 20 mm wide gap between the adjacent blanket modules into account, and their peak nuclear responses were evaluated The nuclear responses of the TFC could fully satisfy the radiation limits. On the other hand, the helium production rates of the branch pipe, the leg and the front surface of the vacuum vessel behind the gap were about 2-3 times higher than the radiation limit at the end of the operation, i.e. the neutron fluence of 3 MWa/m2. So the shielding module is required to be increased by 80 mm to satisfy the radiation limit. Also, shielding analyses for 20 - 100 mm wide gaps were performed, and it was found that the gap width could be increased by up to 50 mm from the TFCs protection for their peak nuclear responses point of view.