ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Satoshi Sato, Hideyuki Takatsu, Yasushi Seki, Toshihisa Utsumi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1129-1133
Neutronics Experiments and Analyses | doi.org/10.13182/FST96-A11963100
Articles are hosted by Taylor and Francis Online.
Shielding analyses of the inboard blanket, the vacuum vessel and the Toroidal Field Coil (TFC) in International Thermonuclear Experimental Reactor OTTER) were performed by Monte Carlo and 2-dimensional discrete ordinate methods taking the radiation streaming through the 20 mm wide gap between the adjacent blanket modules into account, and their peak nuclear responses were evaluated The nuclear responses of the TFC could fully satisfy the radiation limits. On the other hand, the helium production rates of the branch pipe, the leg and the front surface of the vacuum vessel behind the gap were about 2-3 times higher than the radiation limit at the end of the operation, i.e. the neutron fluence of 3 MWa/m2. So the shielding module is required to be increased by 80 mm to satisfy the radiation limit. Also, shielding analyses for 20 - 100 mm wide gaps were performed, and it was found that the gap width could be increased by up to 50 mm from the TFCs protection for their peak nuclear responses point of view.