ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Satoshi Sato, Koichi Maki, Hideyuki Takatsu, Yasushi Seki
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1076-1080
Neutronics Experiments and Analyses | doi.org/10.13182/FST96-A11963093
Articles are hosted by Taylor and Francis Online.
Shielding analyses for toroidal field coils (TFCs) around the exhaust duct in a nuclear fusion experimental reactor have been performed by two-dimensional discrete ordinate method, and their peak nuclear responses were evaluated. From the results, it was found that the duct wall of about 410 mm thickness was required incase of no shield structure behind the divertor in ordsr to satisfy the radiation limits of TFCs. Taking overestimation due to the analysis model simulating the exhaust duct with a toroidally continuos opening into account, nuclear responses may possibly be lower than the radiation limits by 300 mm thick duct wall. By providing a 480 mm thick shield with 140 mm wide slits behind the divertor, nuclear responses were reduced to about 1/20, and they were equal to or lower than the radiation limits for 200 mm thick duct wall. Also, taking overestimation, nuclear responses may possibly be more than six times lower than the radiation limits for 200 mm thick duct wall.