ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
M. Yoshida, T. Cho, M. Hirata, S. Nagashima, H. Ito, J. Kohagura, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 289-291
Diagnostics | doi.org/10.13182/FST03-A11963617
Articles are hosted by Taylor and Francis Online.
In tandem-mirror experiments, plasma-confining potentials produced by electron-cyclotron heatings (ECH) play one of the most critical roles in the improvement of simple-mirror plasma confinement. For the observations of spatially resolved ion spectrum distributions require ion-sensitive and reproducible rigid detector-array units from a practical viewpoint. These data are, in turn, physically of importance for plasma confinement investigations including potential effects on plasma confinement as well as transport analysis in relation to the potential profiles. From these motivations, the relation of spatial distributions of ion-confining potentials ɸc. and end-loss-ion fluxes IELA is investigated by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of GAMMA 10. Axisymmetric profiles of ɸc are found to have a good correlation with axisymmetric plugging distributions in IELA. These are consistently interpreted in terms of the Pastukhov theory of the relation between ɸc and IELA. For these axisymmetric plasmas, particle-balance calculations show ignorable radial-loss-ion fluxes I⊥ as compared to IELA. This result (i.e. IELA>>I⊥ is consistent with the assumption of the Pastukhov theory in which the axial particle loss alone is taken into account.