ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
J.Y. Kim, S.G. Lee, S.S. Kim, W.H. Ko, J.G. Park, B.H. Park, Hogun Jhang H.G. Na, N.S. Yoon, M. Kwon, HANBIT team
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 157-161
Transport and Confinement | doi.org/10.13182/FST03-A11963584
Articles are hosted by Taylor and Francis Online.
A brief overview is presented on initial study results of plasma transport and confinement in HANBIT mirror device. The parallel confinement is calculated using a generalized Pastukhov's formula, and compared with some experimental estimates. It is shown that the confinement time is less than 1 ms in typical HANBIT discharges. Analysis and simulation study are also presented on HANBIT discharges, particularly, ting to clarify the plasma density jump phenomena, which was observed in HANBIT when the RF frequency ω becomes smaller than the ion cyclotron frequency ωci. It is shown that the jump in plasma density (and beta, as shown from recent measurements) might be explained mainly as due to the increase in the parallel confinement time by the onset of ICRH ion heating at ω < ωci. The long-pulse operation with high-density plasma, even with a small initial fueling, can be also explained as due to the strong wall-recycling by fast neutrals generated from the ICRH heated hot ion at ω< ωci.