ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
U. Samm
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 352-358
Edge Physics and Exhaust | doi.org/10.13182/FST02-A11963535
Articles are hosted by Taylor and Francis Online.
The concept of a cold radiative plasma boundary is presented as a possible solution of the energy exhaust problem in a fusion reactor. The most relevant processes which determine level and location of the radiation from low-Z impurities are discussed in detail. Experimental results are used to demonstrate the general feasibility of generating a stable and quasi-stationary plasma with a cold radiating layer on a high power level. Furthermore, the limitations of the concept are briefly analyzed addressing feed-back control of the impurity level, thermal stability, particle transport and ignition conditions.