ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Nerem, D.H. Kellman, S.G.E. Pronko, J.R. Valentine
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1116-1120
Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST01-A11963394
Articles are hosted by Taylor and Francis Online.
As part of the Electron Cyclotron Heating (ECH) Facility upgrade at DIII–D an 8.4 MW Modulator/Regulator Power System was designed and constructed using acquired hardware from the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) program as a foundation.1 Design changes in the feedback control of the modulator/regulator (M/R) was motivated by the need for improved output voltage regulation and improved capability to modulate the output voltage consistent with reference command signals containing modulation patterns (typically square wave). The regulation characteristics of the old ECH M/R power system had previously constrained gyrotron operation due to marginal voltage control loop stability and slow response to voltage step changes. The technical approach was to develop models of the circuit functions of the M/R controller from the circuit diagrams, and then examine the control characteristics using circuit analysis software. MATLAB® Simulink® and Intusoft IsSPICE4® (SPICE) codes were used to examine the control issues. These analysis software tools were used to simulate the controller functions and yielded identical results. The SPICE circuit model was selected as a baseline for future maintenance by the engineering staff. The analysis of the controller model blocks provided the needed information to modify the controller circuits. Changes made to the controller included addition of a voltage feedback loop around the grid driver amplifier for the power tetrode control grid in the M/R, and changes to the feedback loop compensation of the main error amplifier. The implemented revised controller performance matches the model performance predictions remarkably well. This paper describes the circuit models, implementation of the revisions to the controller, and recent operational results.