ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
S.G.E. Pronko, S. Delaware, T.E. Harris, D. Hoyt, D.H. Kellman, R.A. Legg, M. Lontoc, A. Nerem, J.R. Valentine
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1111-1115
Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST01-A11963393
Articles are hosted by Taylor and Francis Online.
The DIII-D National Fusion Facility at General Atomics is completing the upgrade of its electron cyclotron heating (ECH) capability from the previous 3 MW at 110 GHz to 6 MW of generated microwave power.1 An 8.4 MW modulator/regulator (M/R) power system has been designed and constructed.2 Surplus hardware that was acquired from the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF program) was used as part of the design foundation. The power system, with a nominal output of −80 kV and 80 A, can supply a pair of gyrotrons with up to 10 second long pulses that may or may not be modulated.
The modulator/regulator was designed about the BBC CKQ200-4 tetrode, which was the key component acquired from the LLNL program. In order to meet the performance goals of the program, substantial design modifications were needed to be made on the grid driver amplifier and the closed-loop feedback regulator circuits.3 Also, a newly designed crowbar switch system, featuring a high speed, thyratron-like triggered gas switch, was implemented. The modulator/regulator performance to date has been demonstrated as having <0.06% peak-to-peak ripple and square wave modulation of 50% amplitude at 2 kHz. The key features of the design of the power system and its performance will be presented in this paper.