ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
P. I. Strand, W. A. Houlberg
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1091-1095
Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST01-A11963389
Articles are hosted by Taylor and Francis Online.
The magnetic flux evolution problem in toroidal plasmas is formulated in a framework suitable for integrating externally imposed magnetic field components with internal components from bootstrap current and auxiliary current drive. The formulation is applicable to 3-dimensional (3-D) stellarator equilibria, and reduces to 2-D form for axisymmetric plasmas. Here the numerical implementation of this framework is described. Conservative integrations schemes, resolution close to the magnetic axis, and efficient methods for flux surface averaging are discussed. Results from the test code THRIFT (THRee dimensional Inductive Flux evolution in Toroidal plasmas) are used to illustrate numerical convergence properties for a low aspect ratio stellarator and the axisymmetric NSTX spherical torus.