ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Y. Iwai, T. Yamanishi, M. Nishi
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1078-1082
Tritium | doi.org/10.13182/FST01-A11963387
Articles are hosted by Taylor and Francis Online.
A preliminary improved design study of the cryogenic distillation hydrogen isotope separation system (ISS) for the fuel cycle of the ITER-FEAT, a fusion experimental reactor, was carried out based on the substantial reduction of hydrogen flow to the ISS resulting from the scale reduction from the former design for the FDR-ITER. In this study, a four-column cascade was proposed considering the 450 seconds burn / 1350 seconds dwell operation scenario of ITER-FEAT instead of the present five-column cascade design of the FDR-ITER. This proposed cascade is found to be effective in all operation phases. The impact of the optional 3000 seconds burn / 9000 seconds dwell operation scenario on the present design is also discussed in this paper. Tritium concentration in the released hydrogen stream into environment must always be controlled to be lower than the regulation limit for stack release, and the two-column system for treatment of this flow is found to be effective for meeting this requirement.