ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kazuyuki Takase
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1043-1049
Safety and Environment | doi.org/10.13182/FST01-A11963381
Articles are hosted by Taylor and Francis Online.
Dust-air two-phase flow characteristics in a fusion experimental reactor during a loss-of-vacuum-accident (LOVA) event were analyzed numerically by three dimensional simulations using a newly developed thermal-hydraulic analysis code. Physical models on the motion of dust were considered to resolve the dust mobilization conveying by the fluid. Air ingress behavior through a breach at the LOVA event was calculated by using compressible Navier-Stokes equations. It was predicted quantitatively from the results of the present numerical study that the dust mobilization receives strongly the effect of the breach size and the fraction of the mobilized dust is determined by a circulating flow and buoyancy-driven exchange flow which are generated in a vacuum vessel of the fusion experimental reactor after the LOVA event.