ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
J. Sanz, O. Cabellos, P. Yuste, S. Reyes, J.F. Latkowski
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 996-1002
Safety and Environment | doi.org/10.13182/FST01-A11963372
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion (ICF) devices, both test/experimental facilities and fusion energy (IFE) power plants, will operate in a pulsed mode. However, the pulsing schedule in these devices is very different, and it could range from one shot every several days in an experimental facility to some Hz in IFE reactors. The main objective of the present work is to determine whether or not a continuous-pulsed (CP) approach could be an accurate and practical methodology in modeling the pulsed activation experienced by chamber materials of both types of devices. In testing the applicability of the CP irradiation model, we used materials and neutron environment scenarios of the HYLIFE-II reactor and the NIF experimental facility. It is demonstrated that a CP approach consisting of a continuous irradiation period followed by a series of only a few pulses prior to shutdown, can efficiently model the real pulsed operating regimes of the chamber materials, in terms of both accuracy and CPU time consumption. Pros and cons of the model when compared with an equivalent steady-state (ESS) method are discussed, and comparison with the exact pulsed (EP) modeling is also performed.