ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
R.C. Duckworth, J.G. Murphy, T.T. Utschig, M.L. Corradini, B.J. Merrill, R.L. Moore
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 976-980
Safety and Environment | doi.org/10.13182/FST01-A11963368
Articles are hosted by Taylor and Francis Online.
Vapor explosions are processes involving significant energy exchange between a hot and colder, more volatile liquid. This phenomenon can cause significant pressurization and may cause damage to structures. Historically, vapor explosions have been of interest in industrial processes with molten metals, and postulated accident scenarios involving molten fuel and water in current light water reactors. With the potential use of superconducting magnets in fusion designs, postulated accident scenarios involving water used to cool various structures and cryogenic materials (i.e., helium and nitrogen) required for magnet cooling have to be addressed. A rapid increase in pressure may be seen if liquid nitrogen or helium comes into contact with water. Because of significant temperature differences between the water and cryogenic materials, a rapid heat transfer event similar to a vapor explosion may be observed with the cryogen as the ‘coolant’ and the water as the ‘fuel’. Experiments to quantify this phenomenon were performed at the University of Wisconsin-Madison. This paper reviews these experiments and presents comparison analyses using the systems code, MELCOR. Experimental results showed that no large ‘shock’ pressures were observed. Thus, one can consider the ‘fuel-coolant’ interaction to be a boiling event controlled by ‘bulk thermodynamics’. We hope to benchmark the code and show its usefulness in determining potential critical issues involving these fusion systems.