ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
R.C. Duckworth, J.G. Murphy, T.T. Utschig, M.L. Corradini, B.J. Merrill, R.L. Moore
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 976-980
Safety and Environment | doi.org/10.13182/FST01-A11963368
Articles are hosted by Taylor and Francis Online.
Vapor explosions are processes involving significant energy exchange between a hot and colder, more volatile liquid. This phenomenon can cause significant pressurization and may cause damage to structures. Historically, vapor explosions have been of interest in industrial processes with molten metals, and postulated accident scenarios involving molten fuel and water in current light water reactors. With the potential use of superconducting magnets in fusion designs, postulated accident scenarios involving water used to cool various structures and cryogenic materials (i.e., helium and nitrogen) required for magnet cooling have to be addressed. A rapid increase in pressure may be seen if liquid nitrogen or helium comes into contact with water. Because of significant temperature differences between the water and cryogenic materials, a rapid heat transfer event similar to a vapor explosion may be observed with the cryogen as the ‘coolant’ and the water as the ‘fuel’. Experiments to quantify this phenomenon were performed at the University of Wisconsin-Madison. This paper reviews these experiments and presents comparison analyses using the systems code, MELCOR. Experimental results showed that no large ‘shock’ pressures were observed. Thus, one can consider the ‘fuel-coolant’ interaction to be a boiling event controlled by ‘bulk thermodynamics’. We hope to benchmark the code and show its usefulness in determining potential critical issues involving these fusion systems.