ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
T. J. Venhaus, R. A. Causey
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 868-873
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963348
Articles are hosted by Taylor and Francis Online.
Tungsten and tungsten alloys are candidate plasma-facing materials for future fusion reactors due to their excellent thermal properties and sputtering characteristics. A Sandia National Laboratories experimental program investigated the retention and release characteristics of hydrogen isotopes in tungsten and tungsten doped with 1% lanthanum oxide. A single model based on a high recombination rate coefficient, enhanced diffusivity in the implant zone for high flux experiments, and a 1.4 eV trap was capable of simulating all of the data accumulated in the experimental program. In this report, the model is now applied to data obtained by other researchers examining hydrogen migration in tungsten. Almost without exception, the model was able to accurately duplicate the hydrogen isotope retention and release with the single variable of trap density.