ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M.E. Sawan, R.R. Peterson
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 834-838
Chamber Technology | doi.org/10.13182/FST01-A11963343
Articles are hosted by Taylor and Francis Online.
Linked neutronics and hydrodynamics calculations have been performed for X-1 targets using the radiation hydrodynamics computer code BUCKY and the neutronics code ONEDANT. Target neutronics calculations were performed taking into account the varying configuration during the burn as well as the distributed material densities and fusion neutron source profile. The energy spectrum of neutrons emitted from the target varies during the bum with a softer spectrum produced in early time intervals. Neutrons emitted from the target carry 69.22% of the fusion energy with 28.3% carried by the x-rays and debris. A small fraction of 0.03% is carried by gamma photons and 2.45% is lost in endoergic reactions. Full coupling of the neutronics and hydrodynamics calculations is essential for making consistent predictions of the partitioning of the target energy between x-rays, ion debris, neutrons, and gamma photons and an accurate estimate of the net target yield by accurately accounting for the endoergic energy losses and energy deposited by neutrons.