ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Toshiharu Sakurai, Toshiaki Yoneoka, Satoru Tanaka, Akihiro Suzuki, Takeo Muroga
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 649-653
Fusion Materials | doi.org/10.13182/FST01-A11963312
Articles are hosted by Taylor and Francis Online.
A purpose of the present study is to investigate the compatibility of SiC/SiC composite material and AlN ceramics with liquid metals. Corrosion behavior of materials could be affected by non-metallic impurities like nitrogen in liquid lithium. Another purpose of the present study is to control the concentration of nitrogen impurity by using getter materials and to study the effect of getter materials on compatibility with AlN. At 700K, all of the SiC/SiC specimens, except high purity specimen, were entirely broken down in liquid lithium. Even in this high purity specimen, many cracks were observed on the surface. On the other hand, in the case of SiC/SiC with Li17Pb83 at 773K, all of the specimens were not corroded. At 673K, impurity levels in AlN were changed in the case immersed in liquid lithium with getter materials. At 823K, impurities in AlN were attacked by lithium and the surface of it was locally peeled off. It was also observed that the getter material captured nitrogen.