ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
A. Y. Ying, H. Huang, M. A. Abdou, L. Zi
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 617-623
Fusion Materials | doi.org/10.13182/FST01-A11963306
Articles are hosted by Taylor and Francis Online.
In this paper, a thermomechanical interaction of a ceramic breeder pebble bed and structural plate is studied based on a recently developed discrete numerical simulation code. The calculations take into account the coupling effect between structural wall deformation and pebble bed deformation, which greatly increases the computing time and complicates the computational procedures in determining the particle-wall contact characteristics. Specifically, the model is applied to a lithium orthosilicate packed bed for the evaluation of the deformation of a circular plate due to bed thermal expansion, while the results are compared with SCATOLA's experimental data. Numerical results using a fixed boundary condition show reasonable agreement with the experimental data. In addition, numerical simulations confirm an irreversible plate deformation after a thermal cycle run as observed in the experiments, although these experimentally observed deformations are larger than that of the numerical estimations. Moreover, numerical results of contact forces at contact points provide information concerning the mechanical integrity of the bed at a moderately high temperature.