ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Yoshi Hirooka, Hoju Fukushima, Noriyasu Ohno, Shuichi Takamura, Masahiro Nishikawa
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 60-64
Supplemental Paper | Fifteenth Topical Meeting on the Technology of Fusion Energy | doi.org/10.13182/FST04-A427
Articles are hosted by Taylor and Francis Online.
This paper will report on the proof-of-principle (POP) experiments conducted to demonstrate reduced wall recycling, using a laboratory-scale test unit, constructed based on the concept of moving-surface plasma-facing component (MS-PFC). In this concept, the moving-surface exposed to edge plasmas in steady state magnetic fusion devices is continuously deposited ex-situ with a getter material, so that particle trapping capabilities can be regenerated prior to the subsequent exposure. In our previous paper, the construction details of the MS-PFC test unit and the first results in the case of titanium gettering was reported, but in the present paper preliminary results in the case of lithium gettering will be presented for comparison. Results indicate that the H light intensity used as the measure of hydrogen recycling is reduced by ~6% due to titanium gettering and by ~12% due to lithium gettering, both at steady state.