ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Paul J. Meier, Gerald L. Kulcinski
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 507-512
Fusion Economic Studies | doi.org/10.13182/FST01-A11963286
Articles are hosted by Taylor and Francis Online.
This study summarizes a recent life-cycle net energy analysis (NEA) on a modern natural gas turbine power plant for comparison against DT fusion and conventional technologies (coal, fission, and wind). The NEA results are used as the basis for developing a life-cycle greenhouse gas (GHG) emission rate. The GHG emission rate for DT fusion is 9 metric tonnes of CO2 equivalent emitted per gigawatt electric hour produced (T/GWeh). This rate compares favorably against gas turbine (464 T/GWeh) and conventional coal (974 T/GWeh), and competitively against fission (15 T/GWeh) and wind (15 T/GWeh). The implications of this research for U.S. GHG mitigation are discussed. In evaluated scenarios, the installed nuclear and renewable capacity in the U.S. must quadruple by 2050 to maintain a Kyoto based emission target, with fusion and/or other renewable sources comprising 43-59% of U.S. capacity.