ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
O. Kaneko, K. Kawahata, A. Komori, N. Ohyabu, H. Yamada, N. Ashikawa, P. deVries, M. Emoto, H. Funaba, M. Goto, K. Ida, H. Idei, K. Ikeda, S. Inagaki, N. Inoue, M. Isobe, S. Kado, K. Khlopenkov, S. Kubo, R. Kumazawa, S. Masuzaki, T. Minami, J. Miyazawa, T. Morisaki, S. Morita, S. Murakami, S. Muto, T. Mutoh, Y. Nagayama, N. Nakajima, Y. Nakamura, H. Nakanishi, K. Narihara, K. Nishimura, N. Noda, T. Notake, T. Kobuchi, Y. Liang, S. Ohdachi, Y. Oka, M. Osakabe, T. Ozaki, R. O. Pavlichenko, B. J. Peterson, A. Sagara, K. Saito, S. Sakakibara, R. Sakamoto, H. Sasao, M. Sasao, K. Sato, M. Sato, T. Seki, T. Shimozuma, M. Shoji, H. Sugama, H. Suzuki, M. Takechi, Y. Takeiri, N. Tamura, K. Tanaka, K. Toi, T. Tokuzawa, Y. Torii, K. Tsumori, I. Yamada, S. Yamaguchi, S. Yamamoto, M. Yokoyama, Y. Yoshimura, K. Y. Watanabe, T. Watari, K. Itoh, K. Matsuoka, K. Ohkubo, I. Ohtake, S. Satoh, T. Satow, S. Sudo, S. Tanahashi, K. Yamazaki, Y. Hamada, O. Motojima, M. Fujiwara
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 322-328
Fusion Technology Plenary | doi.org/10.13182/FST01-A11963255
Articles are hosted by Taylor and Francis Online.
The experimental results from the Large Helical Device (LHD) heliotron / torsatron of the first two years are reviewed. The world's largest superconducting helical coils have been driven up to 2.9 Tesla on the axis which is close to the designed value (3 T). The obtained plasma performances are better than those predicted by the database from the medium-size helical devices. These improvements are attributed mainly to the optimization of a magnetic field configuration which can be controlled by shifting the magnetic axis inward than that of standard case. This configuration improves particle orbits of trapped high energy ions resulting in success of ICRF heating in LHD. Efforts have also been made on steady state plasma operation, and long pulse discharges more than one minute have been achieved both by ICRF and NBI. It should be noted that the feature of no current-disruption in helical plasma makes the discharges easy.