ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
A.A. Ivanov, A.V. Anikeev, P.A. Bagryansky, A.N. Karpushov, V.N. Komilov, V.V. Maximov, K. Noack
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 213-216
Poster Presentations | doi.org/10.13182/FST01-A11963444
Articles are hosted by Taylor and Francis Online.
Experiments with 3 MW D0 injection have been carried out in the Gas Dynamic Trap (GDT) to simulate the axial profile of the fusion reaction intensity in the projecting neutron source based on the GDT1. Quite narrow angular distribution function of the fast ions produced by an oblique neutral beam injection results in a peaked axial profile of the fusion yield. This strong peaking is essential to produce intense neutron flux in the testing zones of the GDT–based neutron source.
The scintillation counters were installed in the central cell of the device to monitor the DD fusion reactions products: neutrons (2.45 MeV) and protons (3.02 MeV). Scintillation detectors were located closely to the plasma column inside of the vacuum vessel to avoid contribution from the scattered neutrons and to improve spatial resolution of the measurements. Longitudinal profiles of 2.45 MeV neutrons and 3.02 MeV protons have been measured in the high-beta regime of the GDT operation.
In the paper the experimental data are compared with the results of numerical simulations 2. The conclusion is drawn that the kinetics of the fast ion relaxation and scattering is determined by classical Coulomb collisions 3.