ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Seong-Heon Seo, H. K. Na, M. Kwon, N. S. Yoon
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 163-166
Topical Lectures | doi.org/10.13182/FST01-A11963432
Articles are hosted by Taylor and Francis Online.
Doppler Broadening methods have been intensively used in measuring the temperature of neutral atoms and ions in plasma diagnostics. However, since only the line-integrated emission can be measured in the experiments, the local temperature can not be found directly. To solve this problem, we first measured the spatial distribution of each spectrum by Abel inversion and then obtained the Doppler broadening at each radial position by analytically combining the spectra. The emissions are collected through five optical fibers which are located at intervals of 48 mm and inserted into the slit of a spectrometer. The dispersed output from the spectrometer is measured with a CCD camera. Since the abscissa of a CCD frame represents the spectra and the ordinate represents the spatial distribution, the Abel-inverted Doppler broadening is easily measured. By using this method, we measured the temperature distribution of neutral atoms and ions in the Hanbit device.