ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Lee, T. Kondoh, R. Yoshino, T. Cho, M. Hirata, Y. Miura
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 151-154
Topical Lectures | doi.org/10.13182/FST01-A11963429
Articles are hosted by Taylor and Francis Online.
An advanced diagnostic technique to measure the ion temperature and fast ions in open magnetic field systems is described. The method for the determination of deuterium to tritium ratio and the helium ash density in DT burning plasmas is also proposed. The measurement is made by small angle collective Thomson scattering (CTS) using a high power pulsed CO2 laser and heterodyne receiver system. The axial profiles can be measured by an axially injected beamline. Attenuation and refraction in the plasma are unimportant even for large devices. Scattered spectrum of the expected DT fusion plasma with currently developed laser and receiver system is presented. The component of scattered laser power nearly perpendicular to the magnetic field giving rise to ion cyclotron modulation of the scattered spectrum. Spectrum from pure deuterium and from D-T mixed plasma show the possibility of fuel ratio measurement. The scattered spectrum of D-T plasmas with thermalized helium ash is also calculated. Experimental arrangement to improve the S/N ratio in low density open magnetic systems are also discussed. The possibility of ion temperature and modulation measurement using a homodyne receiver system in GAMMA 10 are also evaluated.