ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
S. Lee, T. Kondoh, R. Yoshino, T. Cho, M. Hirata, Y. Miura
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 151-154
Topical Lectures | doi.org/10.13182/FST01-A11963429
Articles are hosted by Taylor and Francis Online.
An advanced diagnostic technique to measure the ion temperature and fast ions in open magnetic field systems is described. The method for the determination of deuterium to tritium ratio and the helium ash density in DT burning plasmas is also proposed. The measurement is made by small angle collective Thomson scattering (CTS) using a high power pulsed CO2 laser and heterodyne receiver system. The axial profiles can be measured by an axially injected beamline. Attenuation and refraction in the plasma are unimportant even for large devices. Scattered spectrum of the expected DT fusion plasma with currently developed laser and receiver system is presented. The component of scattered laser power nearly perpendicular to the magnetic field giving rise to ion cyclotron modulation of the scattered spectrum. Spectrum from pure deuterium and from D-T mixed plasma show the possibility of fuel ratio measurement. The scattered spectrum of D-T plasmas with thermalized helium ash is also calculated. Experimental arrangement to improve the S/N ratio in low density open magnetic systems are also discussed. The possibility of ion temperature and modulation measurement using a homodyne receiver system in GAMMA 10 are also evaluated.