ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
C.J. Barth
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 344-351
Plasma Diagnostics | doi.org/10.13182/FST00-A11963229
Articles are hosted by Taylor and Francis Online.
The invention of the first laser and many others after that has led to a large amount of different plasma diagnostics using some aspect of the interaction between light and plasmas. In this paper a short review of these diagnostics is given, where the emphasis will be on Thomson scattering and Laser Induced Fluorescence. Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. When the laser wavelength is much smaller than the plasma Debye length, the scattering spectrum is a reflection of the electron velocity distribution, from which local values for the electron temperature and density can be derived. Laser Induced Fluorescence enables to determine the neutral density of different species in the plasma.