ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
G.M.D. Hogeweij
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 305-312
Instabilities and Transport | doi.org/10.13182/FST00-A11963225
Articles are hosted by Taylor and Francis Online.
By inducing a small electron temperature perturbation in a plasma in steady state one can in principle determine the conductive and convective components of the electron heat flux, and the associated thermal diffusivity and convection velocity. The same can be done for other plasma parameters, like density or ion temperature.
Experiments show that the response of the temperature in most cases is determined by diffusion. It is in principle possible to determine elements of the matrix of transport coefficients. Interestingly, off-diagonal elements in the transport matrix appear to be important.
In this paper experimental techniques, analysis techniques, basic formulas etc. are briefly reviewed. Experimental results are summarized. The fundamental question whether the fluxes are linear functions of the gradients or not is discussed.
When inducing edge perturbations, often plasma responses are observed which cannot be explained by a local transport model. These so-called ‘non-local’ phenomena have drawn strong attention in the last couple of years, and we will review this class of experiments as well.