ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S.A. Korepanov, P.A. Bagryansky, P.P. Deichuli, A.A. Ivanov, Yu.A. Tsidulko
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 345-348
Poster Presentations | doi.org/10.13182/FST99-A11963881
Articles are hosted by Taylor and Francis Online.
The diagnostic based on neutral beam injector DINA-5 is developed for the plasma density measurements at midplane of Gas Dynamic Trap (GDT1) experiment. The deuterium neutral beam with energy of 25 keV and equivalent current of up to 2 A is injected perpendicularly to plasma column at the midplane of the device. The beam is attenuated by 2–3 times passing through the plasma. The generated ions are deflected by the magnetic field and registered by a detector array located between the plasma and first wall. The deuterium ions produced in various points along the initial beam trajectory are detected in different channels. The signal in each detector depends on the local plasma density in corresponding point enabling to reconstruct the plasma density profile along the beam. In the experiments with the powerful neutral beam injection the plasma diamagnetism achieves considerable value (β ~ 20%) therefore it has to be taken into account for the accurate calculation of the D+ trajectories. The space resolution of the method was estimated to be about 2 cm. The duration of the beam (up to 4 ms) is large enough to overlap the duration of the GDT shots.