ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Victor V. Bulanin
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 141-145
Oral Presentations | doi.org/10.13182/FST99-A11963839
Articles are hosted by Taylor and Francis Online.
The scattering of electromagnetic waves is a primary importance of the short wave fluctuation studies in the fusion research plasmas. Among the scattering diagnostics the CO2-laser one is favorable for a number of reasons. It is insensitive to refraction distortions, is capable of easy coupling with a plasma machines and much more cheaply compared to far infrared scattering technique. The current status the diagnostics based on the light mixture detection principle is considered in the report. This kind of diagnostics for plasma micro-turbulence investigation is mostly employed in toroidal magnetic systems. However its application for the same purpose in mirror plasmas may be perspective as well. Two options of CO2-laser scattering diagnostics developed for FT-2 tokamak are presented. There are distinguished by a kind of laser probing sources and ω-K regions of density fluctuations. The diagnostics capabilities are exemplified by the recent results of CO2-laser scattering experiments in the FT-2 tokamak. The perspectives of the CO2-laser scattering are analyzed for small-scale fluctuation study in open magnetic confinement systems.