ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
H. W. Kugel, G. Ascione, C. Tilson Jr., A. Kumar
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 985-990
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963741
Articles are hosted by Taylor and Francis Online.
TFTR final operations and post-shutdown neutron activation measurements were made. Ionization chambers were used to follow TFTR activation during operations and after shutdown. Gamma-ray energy spectroscopy measurements were performed to characterize TFTR activation at accessible vessel-bays, and on sample hardware removed from structures at various distances from the vessel. The results demonstrate long-lived activations from common, commercially available materials used in the fabrication and field engineering of TFTR. The measurements allow characterization of residual TFTR neutron activation, the projection of residual activation decay, and benchmarking of low activation issues simulations.