ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kokooo, I. Murata, D. Nakano, A. Takahashi, F. Maekawa, Y. Jkeda
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 980-984
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963740
Articles are hosted by Taylor and Francis Online.
Benchmark experiments on vanadium and vanadium alloy with D-T neutrons have been done at two angles, 0 degrees and 24.9 degrees, using the slab geometry and the time-of-flight (TOF) method. Data were collected for neutron energies ranging from 50 keV to 15 MeV. For vanadium, measurements were made for three slab thicknesses, i.e., 50.8 mm, 1524 mm, and 254 mm, whereas for the vanadium alloy, measurements were made only for 101.6-mm thickness. The measured neutron spectra were compared with MCNP-4A calculations using evaluated nuclear data from the JENDL-3.2, JENDL Fusion-File(IENDL-FF), FENDL/E-1.0 and European Fusion File veraon-3(EFF-3) libraries. The calculated data show reasonable agreement with the measurement, however, some differences are worth noting. Calculations for a slab thickness of 50.8 mm over the energy range from 0.05 to 0.1 MeV underestimate the measurements by about 40% at an angle of 24.9 degrees, while calculations for the energy range from 0.1 to 1.0 MeV, overestimate the measurements by about 40% at an angle of 0 degrees. Calculations made using the JENDL-FF library show good agreement with measurements for energies greater than 11 MeV. Calculations made using the FENDL/E-1.0 library give smaller results than any of the other three libraries in the energy range from 5 to 11 MeV.