ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kazuyuki Takase
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 930-935
Plasma Facing Components Technology (Poster Session) | doi.org/10.13182/FST98-A11963732
Articles are hosted by Taylor and Francis Online.
An analytical study of the turbulent heat transfer in the helium-cooling porous channels for fusion reactors was performed using a direct-simulation numerical approach with no empirical correlations such as the Darcy's law and effective thermal conduction in the porous media. A numerical analysis code for the helium-cooling porous channels was developed and preliminary numerical analyses were carried out. A new porous calculation model was proposed. The porous media was simulated as cubic solids and the direct-contact thermal conduction in the channel was simulated using solid bars. From the numerical analysis results, it was identiñed that the present porous model is useful to predict the turbulent heat transfer characteristics in the helium-cooling porous channel.