ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
D.C. Norris, W. M. Stacey, M. Yaksh, S.M. Ghiaasiaan
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 924-929
Plasma Facing Components Technology (Poster Session) | doi.org/10.13182/FST98-A11963731
Articles are hosted by Taylor and Francis Online.
Heat removal and heat conduction analyses were performed to determine the heat flux limits for a number of possible structural material/coolant combinations: SS316/H2O (5 and 14 MPa), HT-9/H2O (14 MPa), V-4Cr-4Ti/H2O (14 MPa), HT-9/He (15 MPa), and V-4Cr-4Ti/He (15 MPa). A common first-wall design geometry, similar to that of ITER, was used. With H2O coolant and steel, the ASME stress criteria were the most limiting, which constrained the surface heat flux to 0.46 MW/m2 (5 MPa) and 0.41 MW/m2 (14 MPa) for SS316 and to 1.1 MW/m2 for HT-9/H2O (14 MPa). The maximum Be temperature was most limiting for V-4Cr-4Ti/H2O (14 MPa), constraining the heat flux to 1.73 MW/m2. For this first wall geometry, which was optimized for H2O, the He-cooled designs were limited by the 2% pumping power constraint to less than 0.5 MW/m2.
The sensitivity of heat flux limits to maximum allowable material temperatures and to parameters of the model was evaluated.