ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Gary E. Rochau, Jerome A. Hands, Paul S. Raglin, Juan J. Ramirez
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 825-830
Inertial Fusion Technology | doi.org/10.13182/FST98-A11963715
Articles are hosted by Taylor and Francis Online.
The X-1 Advanced Radiation Source, which will produce −16 MJ in x-rays, represents the next step in providing U.S. Department of Energy's Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Analytical scaling arguments and hydrodynamic simulations indicate that X-1 will have the capability to heat hohlraums at temperatures of 230–300 eV to ignite thermonuclear fuel and drive the reaction to a high radiation yield of 200 to 1000 MJ in the laboratory. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched.