ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
K. A. McCarthy, D. A. Petti, W. J. Carmack, S. V. Gorman
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 728-732
Safety and Environment | doi.org/10.13182/FST98-A11963700
Articles are hosted by Taylor and Francis Online.
Tokamak dust is an important contributor to the source term in ITER safety analyses. In this paper we present results of R&D at the INEEL and North Carolina State University to characterize tokamak dust. These results were used to set safety limits on dust for ITER. We present the results of analysis of particulate collected from three operating tokamaks: DIII-D at General Atomics, TFTR at Princeton Plasma Physics Laboratory, and Alcator C-MOD at Massachusetts Institute of Technology, and analysis of particulate produced in SIRENS, a disruption simulator at North Carolina State University. Analyses done include characterization of particulate to produce particle size distributions, chemical analysis, and measurement of effective surface area. The safety limits on dust in ITER have evolved during the EDA as more data have become available. The safety limits specified in NSSR-2 envelope the majority of the data, and provide conservatism to account for the uncertainty in extrapolation of the data to ITER.