ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. Y. Khater
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 614-618
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963682
Articles are hosted by Taylor and Francis Online.
Activation and Safety analyses were performed for the ARIES-ST design. The ARIES-ST power plant includes a water cooled copper center post and uses a SiC/LiPb blanket. The first wall and shield are made of low activation ferritic steel and cooled with helium. The center post, first wall, inboard shield and blanket were assumed to survive for 2.6 full power years (FPY). On the other hand, the outboard shield and vacuum vessel were assumed to stay in place for 40 FPY. Neutron transmutation of copper resulted in the production of several nickel, cobalt and zinc isotopes. The production of these isotopes resulted an increase of the time-space average resistivity of the center post by about 6% after 2.6 FPY. All of the plant components met the limits for disposal as Class C low level waste (LLW). The off-site doses produced at the onset of an accident are caused by the mobilization of the radioactive inventory present in the plant. Analysis of a Loss of Coolant Accident (LOCA) indicated that the first wall and shield would reach a maximum temperature of less than 700°C during the accident. The calculated temperature profiles and available oxidation-driven volatility experimental data were used to calculate the dose at the site boundary under conservative release conditions. The current design produces an effective whole body early dose of 1.77 mSv at the site boundary.