ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
M. J. Gouge
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 435-440
Plasma Fueling, Heating, and Current Drive | doi.org/10.13182/FST98-A11963652
Articles are hosted by Taylor and Francis Online.
Fueling system functions for the International Thermonuclear Engineering Reactor (ITER) and similar scale devices are to provide hydrogenic fuel to maintain the plasma density profile for a specified fusion power, to replace the deuterium-tritium (D-T) ions consumed in the fusion reaction, to establish a density gradient for plasma particle (especially helium ash) flow to the edge, and also to supply hydrogenic edge fueling for increased scrape-off layer flow for optimum divertor operation. An additional function is to inject impurity gases at lower flow rates for divertor plasma radiative cooling, for wall conditioning, and for plasma discharge termination on demand. The burn fraction of ITER is about 1%, which is more than an order of magnitude lower than values typically assumed in fusion reactor studies. This low burn fraction results in large vacuum pumping and fuel processing systems to handle the larger D-T throughput. Gas and pellet fueling efficiency data from past tokamak experiments are reviewed; pellet fueling efficiency is significantly larger than that of gas injection. An overview of the current research and development status of gas and pellet fueling technology is presented.