ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
N. A. Uckan, D. E. Post, J. C. Wesley, ITER JCT, ITER Home Teams, ITER Physics Expert Groups
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 371-376
International Thermonuclear Experimental Reactor (ITER) | doi.org/10.13182/FST98-A11963642
Articles are hosted by Taylor and Francis Online.
The physics knowledge relevant to the design of a reactor-scale tokamak—the ITER Physics Basis—has recently been assessed by the ITER JCT, the ITER Home Teams, and the ITER Physics Expert Groups. Physics design guidelines and methodologies for projecting plasma performance in ITER and reactor tokamaks are developed from extrapolations of various characterizations of the database for tokamak operation and of the understanding that its interpretation provides. Both “conventional” and “advanced tokamak” operating modes are considered. The overall device parameters for ITER are found to be consistent with these guidelines. The plasma performance attainable in ITER is affected by many physics issues, including energy confinement, L-to H and H-to-L-mode power transition thresholds, MHD stability/beta limit, density limit, disruptions, helium removal, impurity content, etc. Design basis and guidelines are provided in each of these areas, along with sensitivities and/or uncertainties involved.