ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
N. A. Uckan, D. E. Post, J. C. Wesley, ITER JCT, ITER Home Teams, ITER Physics Expert Groups
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 371-376
International Thermonuclear Experimental Reactor (ITER) | doi.org/10.13182/FST98-A11963642
Articles are hosted by Taylor and Francis Online.
The physics knowledge relevant to the design of a reactor-scale tokamak—the ITER Physics Basis—has recently been assessed by the ITER JCT, the ITER Home Teams, and the ITER Physics Expert Groups. Physics design guidelines and methodologies for projecting plasma performance in ITER and reactor tokamaks are developed from extrapolations of various characterizations of the database for tokamak operation and of the understanding that its interpretation provides. Both “conventional” and “advanced tokamak” operating modes are considered. The overall device parameters for ITER are found to be consistent with these guidelines. The plasma performance attainable in ITER is affected by many physics issues, including energy confinement, L-to H and H-to-L-mode power transition thresholds, MHD stability/beta limit, density limit, disruptions, helium removal, impurity content, etc. Design basis and guidelines are provided in each of these areas, along with sensitivities and/or uncertainties involved.